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TUTORIAL

1 Scientific Measurement

Essential to much of scienti�c experimentation is measuring values. Sometimes, these measurements
are in the service of some larger project (e.g. testing a theoretical prediction or determining a functional
relationship between two quantities). Other times, determining the value of some quantity is the goal itself,
as in many classic experiments like Milliken’s measurements of the charge of an electron and Planck’s
constant.

If some quantity has a well-de�ned value—which we might call the true value—we would expect re-
peated measurements of it to yield that same value every time. In real experiments, however, there is al-
ways some �uctuation. We need some way to reduce all of the measured values into a single, best-estitmate
value.

Further, it is not enough to simply state a number (with units). It’s important to know, also, how
con�dant we can be that our best-estimate re�ects the true value. Comparisons like “the result almost
agrees with theory” or “our results were di�erent from Joe’s” are not precise enough. To make experimental
results useful, we need to quantify these statements. How to accomplish these tasks will be discussed here
in brief1 with the help of the following example.

Suppose we have a spring cannon, with a spring constant of k = (4204 ± 9) N/m. We launch from it a
small ball of mass m = (100 ± 1) g, after compressing the spring by d = (6.0 ± 0.1) cm. We use a stopwatch
to measure the time t for the ball to rise and fall back to its launch height, and from the time we determine
the launch speed. We record the following times.

Times (s)

2.51 2.57 2.46 2.64 2.53 2.47 2.63 2.54 2.58 2.59
2.52 2.41 2.42 2.62 2.67 2.49 2.52 2.54 2.48 2.54

1.1 The Best Estimate Value

Since we’re doing the same experiment over and over, measuring the same thing, there should be a single
value. Our �rst task will be to condense given data to one value, which represents our best estimate of the
true value.

Mean If the �uctuations in the data are random and uncorrelated (i.e., not due to a defective or poorly
designed experimental setup), they will be as often above the true value as below it, and the best candidate
for the true value is usually the average or arithmetic mean. If we perform N measurements of some
quantity x , resulting in a sequence of values x = {x1, x2,… , xN }, the mean x̄ is given by

x̄ = 1
N

N
∑
i=1

xi . (1)

Median If a data set contains signi�cant outliers, however, the set may be better represented by the
median, which is the midpoint of the data set: there are as many values larger than it as there are smaller
than it. To �nd the median, �rst sort the data. If the number of values is odd, the median is the one in the
middle. If it is even, it is the average of the two values in the middle.

1For more information, or for derivations of some of the equations, consult [1] and/or a statistics textbook.

1 rev. September 28, 2020
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Cannon Example For the launched ball, the measured times were t = {2.51, 2.57,… , 2.54} s. The mean
value is

t̄ = 1
N

N
∑
i=1

ti =
(2.51 + 2.57 +⋯ + 2.54) s

20 = 2.5365 s.

The sorted times are t = {2.41, 2.42,… , 2.53, 2.54,… , 2.64, 2.67} s. Taking the average of the two values
in the middle, we get a median value of tmed = 2.535 s.

1.2 Experimental Uncertainty

Experimental uncertainty is an indication of how inexact a measurement is. Few measurements can pro-
vide results with perfect exactitude (one exception is when the measurement consists simply in counting
discrete objects), so it is essential to report the uncertainty in every measurement.

One way to get a quick impression of the uncertainty in an experiment is to do some graphing. For
our cannon example, Fig. 1 is a histogram showing the number of results in each 0.05 s interval, or “bin.”
It shows the spread, or scatter, in our data. The true value should lie somewhere near the peak of the
histogram. Indeed, the average we calculated above, t̄ = 2.5365 s, lies within the highest bar, near the
center of the graph.

Another way to visualize the spread in the data is simply to plot the measured values against the order
in which the data were taken, as in Fig. 2. Beyond showing the spread in the data visually, a graph like this
could reveal problems with the experimental setup. If the measurements show some systematic change
when we expect random �uctuation, we would need to double-check our equipment.

Most of the data lie in a range from 0.1 s below the mean to 0.1 s above it, so 0.1 s is a decent �rst
approximation of the experimental uncertainty.

Sample standard deviation To more rigorously quantify the spread in data, we can calculate the sam-
ple standard deviation, sometimes called the “uncertainty in a single measurement” or simply the “stan-
dard deviation,” which is essentially the average distance between the individual measurements and the
mean. If we have measuredN values of some quantity x = {x1, x2,… , xN }, with an average of x̄ , the sample
standard deviation is given by
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Figure 1: A histogram indicating the number of
readings in each 0.05 s interval. The average value
is 2.54 s, the standard deviation is 0.071 s, and the
uncertainty in the mean is 0.016 s.
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Figure 2: The times from the measurement plotted
against position in the table. The solid line is the
mean t̄ , and the dashed lines represent t̄ + �t and
t̄ − �t .
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�x =

√
1

N − 1
N
∑
i=1
(xi − x̄)2. (2)

This quantity is a measure of the variation from one measurement to another. We would typically expect
that roughly 2/3 of the measurements will lie between x̄ − �x and x̄ + �x .

Uncertainty in the mean As you measure some quantity more and more times, the mean and the
standard deviation tend toward constant values, and the mean approaches the true value, as the random
�uctuations cancel out. We can capture this e�ect by calculating the uncertainty in the mean, usu-
ally just called the uncertainty2. For N measurements of a quantity x , with standard deviation �x , the
uncertainty is

Δx = �x√
N . (3)

It quanti�es how close we can reasonably expect our mean, best-estimate value to be to the true value.
It is always smaller than the standard deviation, and we can always decrease it—improving the preci-

sion of our experiment—by making more measurements. As a general rule, you should take as many as
time and money allow.

Cannon Example For the cannon, the sample standard deviation is3,

�t =

√
1

N − 1
N
∑
i=1
(ti − t̄)2 =

√
(2.51 − 2.5365)2 + (2.57 − 2.5365)2 +⋯ + (2.54 − 2.5365)2

19 s2

= 0.0713 s.

The range (t̄ −�t , t̄ +�t ) is indicated in Fig. 2 by dashed lines; 65% of the data—close to the expected 2/3—lie
in the range.

The uncertainty in the mean is

Δt = �t√
N = 0.0713 s√20 = 0.0159 s.

1.3 Reporting Results and Significant Digits

The standard form for reporting the value of some measured or calculated quantity x is

x = x̄ ± Δx, (4)
where x̄ is the best estimate (which is usually the mean, so we use the bar notation).

When we quote our result, we only keep the digits which are signi�cant. Signi�cant �gures are deter-
mined by the value of Δx . Only one digit is kept, unless the �rst digit is a 1, in which case either one or
two digits can be retained. Then x̄ should be reported such that the least signi�cant digit (or two digits, if
that is allowed) represents the same power of 10 as the least signi�cant digit of Δx .

Returning to our example, we found that t̄ = 2.5365 s and Δt = 0.0159 s. Given that the �rst signi�cant
digit in Δt is a 1, we can keep either one or two digits.

2Uncertainty is called by most statistics books the standard error. Terms involving the word “error” can be misleading in the
context of experiment design.

3Normally, you will do the calculation of standard deviation using a computer. In Python, using numpy, the command is
numpy.std, with the option ddof=1. In Excel, the function you want is =STDEV.S.
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• If we keep only one digit, we have Δt = 0.02 s. The most signi�cant digit is in the 10−2 place, so we
have to round t̄ to 2.54 s. Then, in standard form, t = (2.54 ± 0.02) s.

• If, instead, we keep two digits, Δt = 0.016 s. The most signi�cant digit is now in the 10−3 place, so
now t̄ = 2.537 s. Then, our �nal result is t = (2.537 ± 0.016) s.

2 Uncertainty in Individiual Measurements

2.1 Sources of Uncertainty

What are the sources of uncertainty in individual measurements? The answer, of course, depends on the
experiment. Here are some possible factors to consider:
Resolution The resolution of an instrument is the smallest interval between two readings that the in-

strument can meaningfully say are di�erent. The stopwatch in our example had a resolution of
0.01 s. The practical resolution of an instrument may also be smaller than the intrinsic resolution, if
external circumstances (e.g. air currents above a scale or electrical �uctuations in wires) introduce
extra noise.

Human factors Though the resolution of the stopwatch above was 0.01 s, the sample standard deviation
was nearly an order of magnitude larger—0.07 s. This is because human reaction time is signi�cantly
longer than 0.01 s (typical values are between 0.15 s and 0.30 s [2]).

Intrinsic roughness Sometimes our precision is limited by the thing we’re trying to measure itself. For
example, determining the diameter of a cotton ball to within a fraction of a millimeter would be
impossible—a cotton ball is far too fuzzy.

All of these sources of uncertainty will be present in any measurement. However, often, one of them
will be so much larger than the others that only it needs to be considered. In the case of the cannon, the
resolution of the stopwatch was irrelevant because the uncertainty due to human reaction time was so
much larger.

2.2 Determining Uncertainty

In most cases, we simply estimate uncertainties in directly measured quantities.
For example, a typical meter stick is marked in 1 mm increments. Since it is often possible—as long

as what we’re measuring has clear, sharp edges—to interpolate between the markings, we might estimate
the uncertainty to be 0.5 mm or even 0.2 mm if we have good vision.

We can also estimate the e�ects of human factors (e.g. response time) and roughness. For example,
suppose we want to measure the distance between two lenses on a horizontal track using a meter stick
built into the track. It is often di�cult to tell precisely where the center of each lens is. Also, if the lenses
are raised vertically o� of the track, measuring the positions will require looking from above, and any
deviation from perfect vertical alignment will make the measurement less accurate. Both of these factors
should increase our estimate of the uncertainty in the distance. In such a case, 0.5 cm or 1 cm might be
more reasonable than the numbers given in the previous paragraph.

3 Propagation of Uncertainty

Often, what we want to know is not measured directly but is instead calculated from quantities that are
measured. The process for determining the uncertainty in a calculated quantities from the uncertainties
in the measured values is called propagation of uncertainty.
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Table 1: Rules for the propagation of uncertainty. The numbers K , � , m, and n must have no uncertainty.

Operation Rule

1. Addition and subtraction

Q = x ± y ± z ±⋯ ΔQ =
√
(Δx)2 + (Δy)2 + (Δz)2 +⋯

2. Multiplication, division, and raising to powers

Q = K x
�ym ⋯
zn ⋯

ΔQ = |Q|
√

(
�Δx
x )

2
+(

mΔy
y )

2
+(

nΔz
z )

2
+⋯

3. Function of one variable

Q = Q(x) ΔQ =
||||
dQ
dx Δx

||||
4. Function of multiple variables

Q = Q(x, y, z,…) ΔQ =
√

(
)Q
)x Δx)

2
+(

)Q
)y Δy)

2
+(

)Q
)z Δz)

2
+⋯

To discuss, let us assume that we have some quantity Q which depends on other quantities x, y, z,…,
and we know the uncertainties in these to be Δx,Δy,Δz,…. The rules for how to calculate the uncertainty
in Q from the uncertainties in the quantities on which it depends are listed in Table 1. Rule 4 is the most
general, though the others are simpler in many cases. However, if the same independent variable appears
more than once in the expression, then Rule 4 must be used.

Example 1 Suppose we have a rectangular sheet for which we have measured the length and width to
be L = (1.25 ± 0.08) m and W = (0.205 ± 0.005) m. We can calculate the area to be

A = LW = (1.25 m)(0.205 m) = 0.256 25 m2.

Since we calculated a product, we can calculate the uncertainty using Rule 2 in Table 1 with Q = A, x = L,
y = W , K = 1, and all powers equal to 1:

ΔA = |A|
√

(
ΔL
L )

2
+(

ΔW
W )

2
= (0.256 25 m)

√

(
0.08
1.25)

2
+ (

0.005
0.205)

2
= 0.017 555 m2

If the �rst signi�cant digit in the propagated uncertainty is a 1, it is acceptable to keep two digits, so we
may conclude that the area can be reported as either A = (0.26 ± 0.02) m2 or A = (0.256 ± 0.018) m2.

Example 2 (a) A car starts with initial velocity v0 = (3.2 ± 0.8) m/s and accelerates at a constant rate
a = (0.6 ± 0.2) m/s2 over time t = (5.36 ± 0.03) s. What is its �nal velocity?

For constant acceleration, �nal velocity is

v = v0 + at = (3.2 m/s) + (0.6 m/s2)(5.36 s) = 6.416 m/s.

To �nd Δv without calculus, we will have to break the problem into parts. We can use Rule 2 to calculate
the uncertainty in the quantity at and then use Rule 1 to get the �nal result. Rule 2 gives

Δ(at) = at
√

(
Δa
a )

2
+(

Δt
t )

2
= (0.6 m/s2)(5.32 s)

√

(
0.2
0.6)

2
+ (

0.03
5.36)

2
= 1.07 m/s.
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Now apply Rule 1:

Δv =
√
(Δv0)2 + [Δ(at)]2 =

√
(0.8 m/s)2 + (1.07 m/s)2 = 1.336 m/s.

In standard form, the �nal velocity of the car is v = (6.4 ± 1.3) m/s or v = (6 ± 1) m/s.

Example 2(b) We could consider the same problem in one step using the (seemingly) more compli-
cated Rule 4. The �nal velocity v is a function of three variables v0, a, and t , each with a corresponding
uncertainty. Thus, Rule 4 gives

Δv =
√

(
)v
)v0

Δv0)
2
+(

)v
)aΔa)

2
+(

)v
)t Δt)

2
=
√
[(1)Δv0]2 + [(t)Δa]2 + [(a)Δt]2

=
√
(0.8 m/s)2 + [(5.36 s)(0.2 m/s2)]

2 + [(0.6 m/s2)(0.03 s)]
2 = 1.336 m/s,

as above.

Cannon Example From kinematics, we can show that the launch speed for the ball is

v0 =
1
2gt,

where t is the total time the ball is in the air and g = 9.802 46 m/s2 (which we will take to have no
uncertainty) is the acceleration due to gravity [3]. Using our earlier results, (t̄ = 2.5365 s and Δt = 0.0159 s,

v0 =
1
2 (9.802 46 m/s2) (2.5365 s) = 12.431 m/s.

We are treating g as a precise constant, so t is the only uncertain quantity. We can use Rule 2:

Δv0 =
||||
1
2 (9.802 46 m/s2) (0.016 s)

||||
= 0.0781 m/s.

In standard form, then, the launch velocity is

v0 = (12.43 ± 0.08) m/s. (5)

4 Comparing Values with Uncertainties

To say that x = x̄ ± Δx means that we can only claim that the true value of x is in the range

x̄ − Δx ≤ x ≤ x̄ + Δx. (6)
Now suppose you have measured some quantity two di�erent ways, that two people performed the

same procedure, or some similar situation. The results of the two experiments are x1 = x̄1 + Δx1 and
x2 = x̄2+Δx2. The results are consistent with each other if the ranges (x̄1−Δx1, x̄1+Δx1) and (x̄2−Δx2, x̄2+Δx2)
overlap.

If the ranges do not overlap, we can estimate how con�dent we are that the results are inconsistent.
It can be shown that if two results are separated by more than two standard deviations,

|x̄1 − x̄2| > 2max (Δx1,Δx2) , (7)

then we can be 95% con�dent that the di�erences between the two results are not due to chance—that the
di�erence is statistically significant.

If neither condition obtains, the experiment is generally considered inconclusive.
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Figure 3: A graph showing the ranges of ve-
locities consistent with two di�erent calculation
methods. The ranges are clearly overlapping.

Cannon Example When the cannon example was �rst described, enough information was given to
determine the launch speed another way. From conservation of energy,

1
2kd

2 = 12mv
2
0 ⇒ v0 =

√
kd2
m =

√
(4204 N/m)(0.060 m)2

0.100 kg = 12.302 m/s.

Using Rule 2 from Table 1 (and distributing the square-root), we can determine the uncertainty.

Δv0 = v0

√

(
Δk
2k )

2
+(

Δd
d )

2
+(

Δm
2m)

2
= (12.302 m/s)

√

(
9

2(4204))
2
+ (

0.001
0.060)

2
+(

0.001
2(0.100))

2

= 0.2145 m/s.

This method of determining the launch speed then yields

v0 = (12.3 ± 0.2) m/s. (8)

The ranges expressed in Eq. (5) and Eq. (8) do clearly overlap, and we can visualize this using a graph
like Fig. 3. Therefore, we can conclude that the two results are in agreement.

5 Uncertainty vs. Error

As we’ve been using the term, uncertainties are not due to mistakes in measurement or experimental setup.
They tend to be random, meaning that if we make repeated measurements, the results will be sometimes
larger and sometimes smaller. Uncertainty is essentially a quanti�cation of this random �uctuation.

On the other hand, error is a sign of a poorly designed experiment. It is systematic. For example, if our
stopwatch ran slow, so that it ticked o� 0.9 s for every 1.0 s that actually elapsed, our data would all be o�
by 10%. An important goal in experiment design is to eliminate as much systematic error as possible.

Some scientists will use the terms uncertainty and error interchangeably but pre�x them with the
adjectives “random” (for what we are calling “uncertainty”) or “systematic” (for what we call “error”).
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